

Learning Neural NOD from Inverse Dynamic Games for Split-Second Interactions

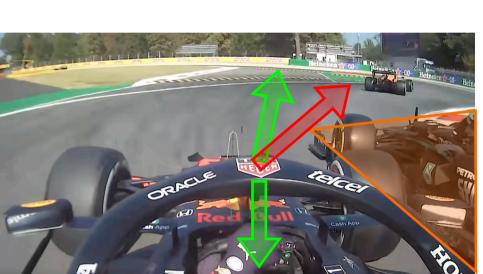
PRINCETON
UNIVERSITY

TOYOTA
RESEARCH INSTITUTE

Haimin Hu, Jaime Fisac, Naomi Leonard, Deepak Gopinath, Jonathan DeCastro, Guy Rosman

Motivation: Time-Sensitive Interactions

How can robots learn to make safe and performant decisions in time-sensitive strategic interactions?



Incident involving world champions L. Hamilton and M. Verstappen during the 2021 Formula 1 Italian Grand Prix

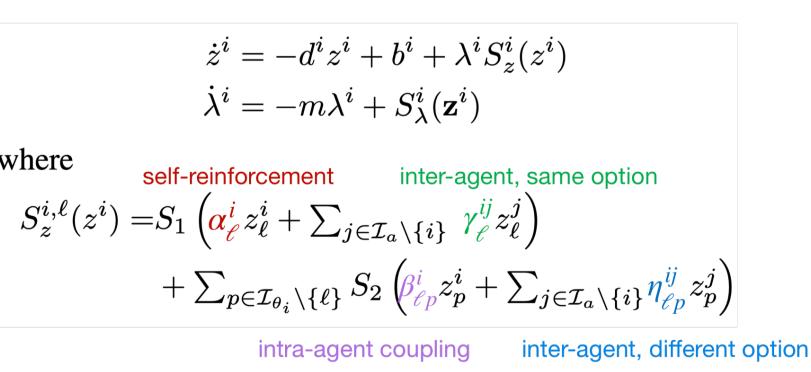
Key idea: Planning game-theoretic robot motion with guarantees of indecision breaking.

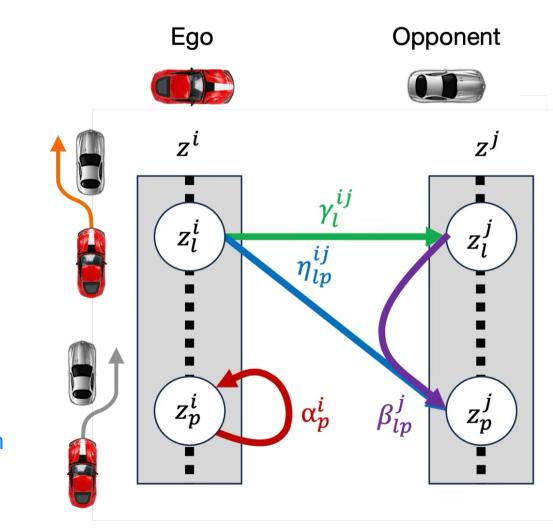
Background: Opinion-Driven Games

Nonlinear Opinion Dynamics (NOD)

Let $z^i \in \mathbb{R}^{N_{\theta^i}}$ be an opinion vector that represents agent i's preference over N_{θ^i} discrete options $z^i_\ell > 0 \ (< 0)$ means that agent i favors (disfavors) option ℓ

 $z_{\ell}^{i}=0$ means that agent i is neutral toward option ℓ

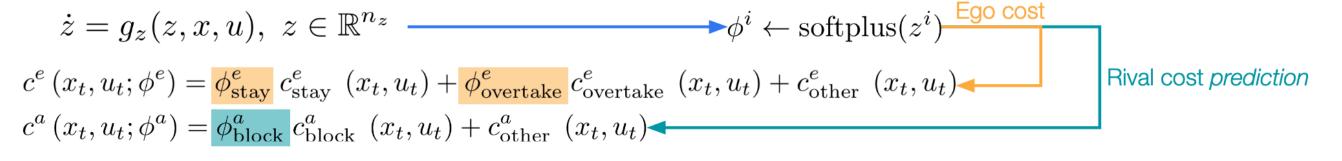




NOD properties:

- Guaranteed opinion formation (i.e., indecision breaking)
- Exponential rate of opinion formation
- Efficient and scalable computation
- Not trivial to construct one

Opinion-Guided Dynamic Games (ODG)



- Opinion value adaptively changes game payoff coefficients
- Closes the loop between opinion evolution and physical interaction

Neural NOD for Interactive Robotics

x_{t} x_{t}

Neural NOD Example

$$\dot{z}_{1}^{e} = -d_{1}^{e}(x, u)z_{1}^{e} + \lambda^{e}(x, u) \left[S\left(\alpha_{1}^{e}(x, u)z_{1}^{e}\right) + S\left(\beta_{12}^{e}(x, u)z_{2}^{e} + \delta_{11}^{ea}(x, u)z_{1}^{a}\right) \right]
\dot{z}_{2}^{e} = -d_{2}^{e}(x, u)z_{2}^{e} + \lambda^{e}(x, u) \left[S\left(\alpha_{2}^{e}(x, u)z_{2}^{e}\right) + S\left(\beta_{21}^{e}(x, u)z_{1}^{e} + \delta_{21}^{ea}(x, u)z_{1}^{a}\right) \right]
\dot{z}_{1}^{a} = -d_{1}^{a}(x, u)z_{1}^{a} + \lambda^{a}(x, u) \left[S\left(\alpha_{1}^{a}(x, u)z_{1}^{a}\right) + S\left(\sum_{i=1,2}\delta_{1i}^{ae}(x, u)z_{i}^{e}\right) \right]
(x, u) \longrightarrow \alpha(\cdot), \beta(\cdot), \delta(\cdot), \lambda(\cdot), d(\cdot)$$

Inverse Game Training

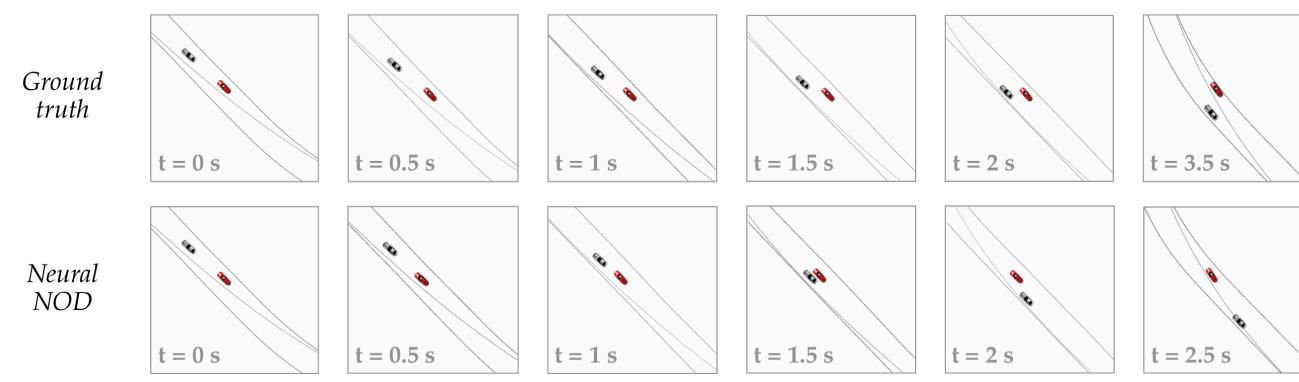
$$\max_{\substack{\phi,\phi_0,\{(\mathbf{x}_n,\mathbf{u}_n)\}_{n\in[N]}}} L := \sum_{n=1}^N p(\mathbf{y}_n \mid \mathbf{x}_n,\mathbf{u}_n)$$
s.t.
$$(\mathbf{x}_n,\mathbf{u}_n) \in \Gamma(\phi,\phi_0), \quad \forall n \in [N]$$

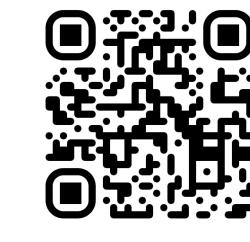
Approach & Features:

- Game-aware synthesis: Learn a Neural NOD from expert demonstrations using inverse dynamic game training
- Situational awareness: The learned DNN outputs NOD parameters that change adaptively based on the observation

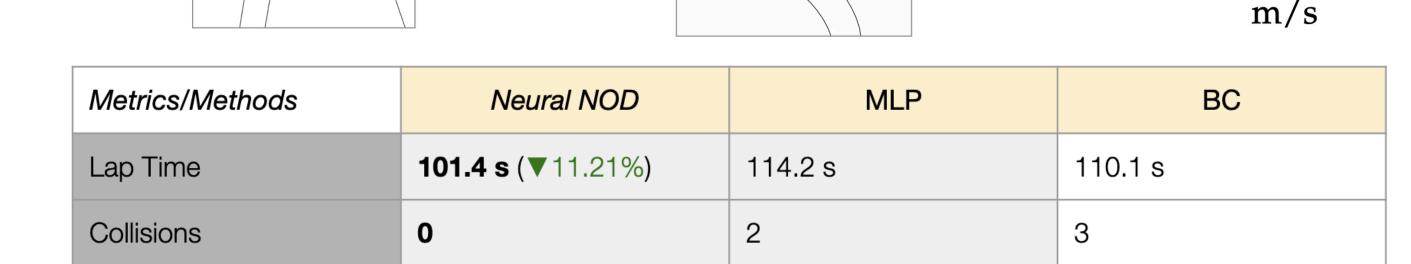
Theoretical Properties:

- With non-zero bias, the neutral opinion is not an equilibrium; the model is ultrasensitive at z=0 (pitchfork unfolds)
- With zero bias, it is possible to analytically construct α and λ such that the neutral opinion is an unstable equilibrium



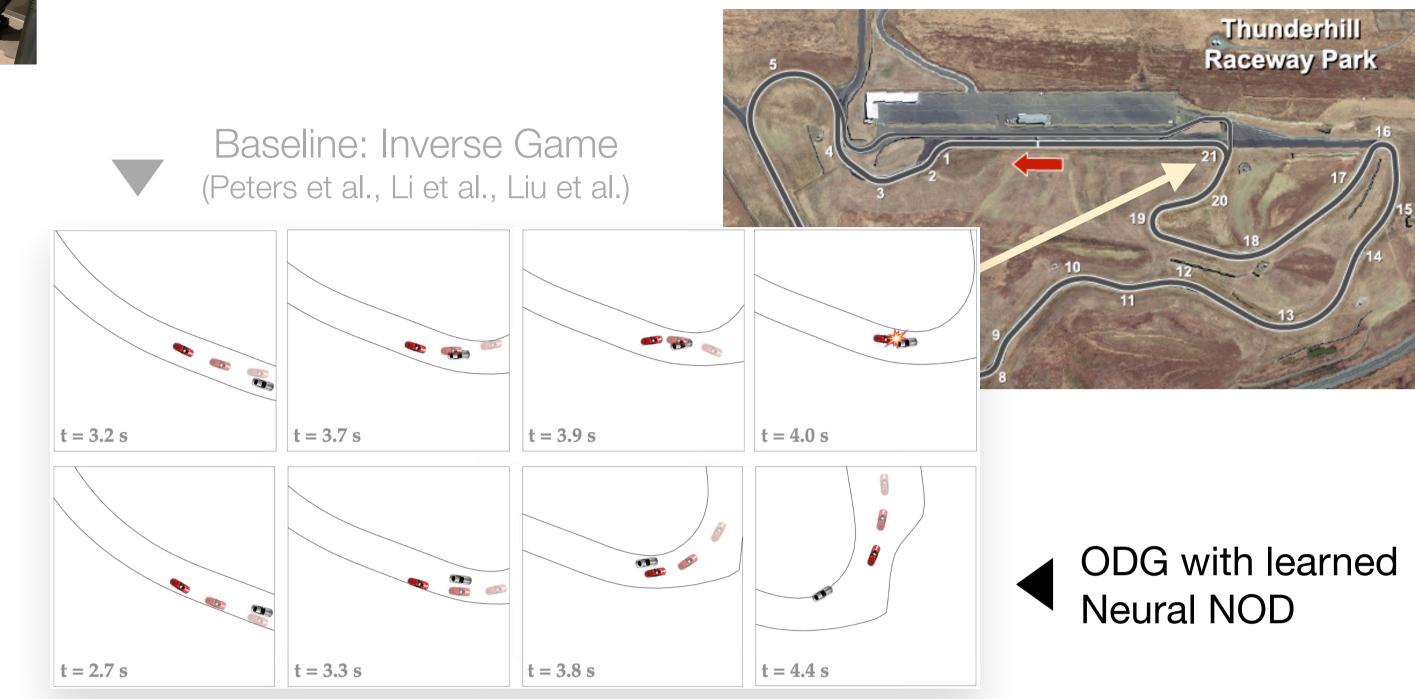


200 m



Case Studies: High-Speed Car Racing

Qualitative Results: Overtaking at Thunderhill Raceway T21



Quantitative Results: Duel and Endurance Races

Results from 100 Duel Races:

Synthetic Data				
Metrics/Methods	Neural NOD	MLP	ВС	
Safe rate	91% (△ 9%)	82%	66%	
Overtaking rate	76.92% (1 4.72%)	62.20%	60.61%	
Avg. leading distance	7.60 m (▲68.89%)	4.50 m	3.64 m	

	Human Data				
	Metrics/Methods	Neural NOD	MLP	ВС	
	Safe rate	81% (A 3%)	78%	62%	
	Overtaking rate	82.72% (A 28.87%)	53.85%	75.81%	
	Avg. leading distance	15.94 m (▲ 10.01%)	14.49 m	12.35 m	

Results from the Endurance Race: